Fusion Products of Kirillov-reshetikhin Modules and Fermionic Multiplicity Formulas
نویسندگان
چکیده
We give a complete description of the graded multiplicity space which appears in the Feigin-Loktev fusion product [FL99] of graded Kirillov-Reshetikhin modules for all simple Lie algebras. This construction is used to obtain an upper bound formula for the fusion coefficients in these cases. The formula generalizes the case of g = Ar [AKS06], where the multiplicities are generalized Kostka polynomials [SW99, KS02]. In the case of other Lie algebras, the formula is the the fermionic side of the X = M conjecture [HKO99]. In the cases where the Kirillov-Reshetikhin conjecture, regarding the decomposition formula for tensor products of KR-modules, has been been proven in its original, restricted form, our result provides a proof of the conjectures of Feigin and Loktev regarding the fusion product multiplicites.
منابع مشابه
Proof of the Combinatorial Kirillov-reshetikhin Conjecture
In this paper we give a direct proof of the equality of certain generating function associated with tensor product multiplicities of Kirillov-Reshetikhin modules for each simple Lie algebra g. Together with the theorems of Nakajima and Hernandez, this gives the proof of the combinatorial version of the Kirillov-Reshetikhin conjecture, which gives tensor product multiplicities in terms of restri...
متن کاملCrystals and Rigged Configurations
Hatayama et al. conjectured fermionic formulas associated with tensor products of U ′ q (g)-crystals B. The crystals B correspond to the Kirillov–Reshetikhin modules which are certain finite dimensional U ′ q (g)-modules. In this paper we present a combinatorial description of the affine crystals Br,1 of type D n . A statistic preserving bijection between crystal paths for these crystals and ri...
متن کاملFermionic Formulas For Unrestricted Kostka Polynomials And Superconformal Characters
The problem of finding fermionic formulas for the many generalizations of Kostka polynomials and for the characters of conformal field theories has been a very exciting research topic for the last few decades. In this dissertation we present new fermionic formulas for the unrestricted Kostka polynomials extending the work of Kirillov and Reshetikhin. We also present new fermionic formulas for t...
متن کاملSchur Positivity and Kirillov–Reshetikhin Modules
In this note, inspired by the proof of the Kirillov–Reshetikhin conjecture, we consider tensor products of Kirillov–Reshetikhin modules of a fixed node and various level. We fix a positive integer and attach to each of its partitions such a tensor product. We show that there exists an embedding of the tensor products, with respect to the classical structure, along with the reverse dominance rel...
متن کاملKirillov–Schilling–Shimozono bijection as energy functions of crystals
The Kirillov–Schilling–Shimozono (KSS) bijection appearing in theory of the Fermionic formula gives one to one correspondence between the set of elements of tensor products of the Kirillov–Reshetikhin crystals (called paths) and the set of rigged configurations. It is generalization of Kerov–Kirillov–Reshetikhin bijection and plays inverse scattering formalism for the box-ball systems. In this ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008